
Parsing CFGs and PCFGs with a
Chomsky-Schützenberger Representation!

Mans Hulden

University of Helsinki
Language Technology

P.O. Box 24
FIN-00014 University of Helsinki, Finland

mans.hulden@helsinki.fi

Abstract. We present a parsing algorithm for arbitrary context-free
and probabilistic context-free grammars based on a representation of
such grammars as a combination of a regular grammar and a grammar of
balanced parentheses, similar to the representation used in the Chomsky-
Schützenberger theorem. The basic algorithm has the same worst-case
complexity as the popular CKY and Earley parsing algorithms frequently
employed in natural language processing tasks.

1 Introduction

In this paper we will present a parsing method for probabilistic (PCFG)
and non-probabilistic context-free grammars (CFG) based on a finite-state
representation derived from the Chomsky-Schützenberger (C-S) Theorem
(Chomsky and Schützenberger, 1963). In the representation, a context-free
grammar G is constructed as a combination of a regular grammar R and a
simple context-free grammar that consists only of balanced parentheses D. The
resulting parser has the same cubic asymptotic complexity and bears many simi-
larities to the classical Cocke-Kasami-Younger (CKY) algorithm (Younger, 1967)
and the Earley parsing algorithm (Earley, 1968). It is also very simple to imple-
ment, assuming one has access to algorithms that perform a basic construction
of finite automata. It may also yield more efficient parsing methods for other
(P)CFG-based systems.

2 Preliminaries

2.1 Notation

We will employ the standard notation of context-free grammars: a context free-
grammar (CFG) G is a 4-tuple (ΣNT , ΣT , P, S), where ΣNT is the set of non-
terminal symbols, ΣT a set of terminal symbols, used in a set of production
! This research has received funding from the European Commission’s 7th Framework

Program under grant agreement no. 238405 (CLARA).

Z. Vetulani (Ed.): LTC 2009, LNAI 6562, pp. 151–160, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

152 M. Hulden

rules P of the form A → α where A ∈ ΣNT and α is a sequence drawn from
(ΣNT ∪ΣT)+. S is a symbol from ΣNT designated as the start symbol. A CFG
is in Chomsky Normal Form (CNF) if all productions are of the form A → a or
A → BC, where a ∈ ΣT and {B, C} ∈ ΣNT .

Additionally, we will use short extended regular expressions to portray regular
languages (and finite automata) and assume familiarity with the notational de-
vices of L∗, (L∩L′), ¬L, (L∪L′), LL′, denoting the Kleene closure of a language,
intersection, complement, union and concatenation of languages, respectively.

2.2 The Chomsky-Schützenberger Theorem

The essential difference between regular grammars and context-free grammars—
that of the possibility of self-embedding—is captured by the Chomsky-
Schützenberger theorem, which essentially says every context-free grammar is a
combination of local constraints on well-formedness (expressible as a regular
grammar), and global constraints, which reduces to the idea that some elements
must be properly nested.

More formally, the theorem states that for every CFL G, there exists regular
language R and two homomorphisms g and h, such that

L(G) = h(g−1(D) ∩ R) (1)

where D is a language consisting of different types of balanced parentheses (a
Dyck language).

Although the original proof of the theorem did not do so, the language D can
be connected directly to the context-free grammar in question and characterized
in terms of parenthesis symbols that encode a derivation of strings in the context-
free language. The role of R is to restrict the occurrence of these parentheses
locally, while D enforces proper nesting. Under such an interpretation, h is a
homomorphism that deletes the parentheses, while g is a homomorphism that
deletes actual terminal symbols ΣT , and hence g−1 ‘inserts’ terminal symbols in
a language arbitrarily.

2.3 An Encoding for CFGs

A way of performing a C-S encoding of a CFL—one that also yields a constructive
proof of the theorem—is to declare a parenthesis language D over an alphabet
Σ() that contains 2n symbols for every context-free rule in a grammar, where
n is the number of symbols on the right hand side, and each such parenthesis
represents a stage of derivation of rule. That is, for each rule of the form:

A → α (2)

we include symbols (1A→α. . . (n
A→α, and)1A→α . . .)n

A→α in Σ() where n is the
number of elements on the right-hand side of the rule, or |α|.

Parsing CFGs and PCFGs with a Chomsky-Schützenberger Representation 153

For example, if a grammar includes the rules

A → BC, B → x, C → y (3)

we include symbols (1A→BC ,)1A→BC , (2A→BC , and)2A→BC for the first rule (and
likewise for the subsequent ones) and encode a derivation:

A

B

x

C

y

(4)

as the string

(1A→BC(1B→xx)1B→x)1A→BC(2A→BC(1C→yy)1C→y)2A→BC

That is, we represent the parse of a string as the bracketed preorder traversal of
the derivation tree.

The connection to the above theorem is that if we declare a homomorphism
h to be Σ() → ε and apply it to the above string, the result is naturally a string
over only the terminal symbols, namely xy.

Given this, a CFG G with terminal symbols ΣT and rules of the form A → α,
where α is an arbitrary string of terminals and nonterminals, can be represented
as h(g−1D() ∩ R), where D() is the language of balanced parentheses over the
set of parenthesis symbols Σ(), and R an intersection of five regular languages
over Σ = (ΣT ∪ Σ()), specified as follows:

(a) (1S→αΣ∗ where S is the initial symbol in G
(b) (i

A→B1...Bn
! (i

Bi→C1...Cn
for Bi ∈ ΣNT

(c))i
A→B1...Bn

! (i+1
A→B1...Bn

for i < n
(d))n

A→B1...Bn
!)ANY ∪ # for i = n

(e) (i
A→B1...Bn

! Bi)i
A→B1...Bn

for Bi ∈ ΣT

Here, the notation x! y denotes the idea that any instance of a symbol x must
be immediately followed by y. Such constraints are clearly expressible as regular
languages. In fact x ! y can be considered shorthand for the extended regular
expression:

¬(Σ∗x¬(yΣ∗))

Also, the abstract symbol # denotes the end-of-string. The homomorphism g is
simply ΣT → ε (delete terminal symbols), and h is Σ() → ε (delete parentheses).
The different regular languages which are intersected encodes strictly local re-
quirements on the ordering of the parenthesis symbols: (b) requires that an open
parenthesis be immediately followed by another open parenthesis representing
the first nonterminal on the right hand side; (c) enforces that a closing parenthe-
sis representing a nonfinal constituent in a rule be followed immediately by the
opening parenthesis for the same rule; (d) says that any parenthesis representing

154 M. Hulden

any final constituent in a rule be followed either by any other closing parenthesis
or the end-of-word; (e) says that a parenthesis representing a rule constituent
yielding a terminal symbol be followed by that terminal symbol and a closing
parenthesis. Additionally constraint (a) enforces that any string begin with the
start symbol.1

The constraints as given above would then apply to the example tree (4) and
its string encoding as follows:

3 Parsing with C-S Representations

Having in this way made the Chomsky-Schützenberger theorem more concrete
by encoding the parse of a sentence as a string, we can see that this immediately
yields a parsing algorithm for context-free languages.

Suppose that we have a context-free grammar G and construct from it the
regular grammar R as described in steps (a)–(e) above, and wish to parse a
sentence w1w2 . . . wn. Now we can easily construct a finite-state automaton Rw

encoding h−1(w1w2 . . . wn), that is, an automaton that accepts only the sentence
to be parsed, with arbitrary sequences of parentheses interspersed (see figure 1,
step 1). This is clearly a matter of first constructing an automaton that accepts
only the sentence w1w2 . . . wn, and subsequently enhancing the automaton with
self-loops for each symbol in Σ(). Now, we can calculate the new finite automaton
Rlocal = Rw ∩ R (figure 1 step 2), that accepts all the locally correct parses of
the sentence at hand. Obviously Rlocal overgenerates in the sense that it may
contain invalid parses where parenthesis symbols are out of alignment, i.e. not
properly nested. However, if we from the automaton representing Rlocal extract
only the set of words where the parentheses are properly nested, this set equals
precisely the correct parses of the sentence w1w2 . . . wn in question with respect
to the grammar G.

To sum up, the steps in figure 1 are:

(1) Calculate Rw = h−1(w)
(2) Calculate Rlocal = R ∩ h−1(w)
(3) Extract from (2) the set of words where parentheses are balanced

Step (3), extracting from Rlocal only those words where parentheses are properly
aligned is addressed by algorithm 1.
1 The proof that the constraints are both necessary and sufficient for, together with

D, encoding the CFG is a fairly simple induction, see e.g. Salomaa (1973) or Kozen
(1997) for proofs with similar representations.

Parsing CFGs and PCFGs with a Chomsky-Schützenberger Representation 155

3.1 The Algorithm

The objective of algorithm 1 is to extract all the paths that contain only balanced
parentheses from the finite-state automaton produced by step (2). To this end,
we maintain an agenda A which contains state pairs. Initially, the only pairs in A
are those where there is a transition from one state to the other with a terminal
symbol. From the agenda A we choose a state pair and expand it to produce
a new state pair if there are transitions on the left and right with balanced
parentheses. This is done in lines 14–16. We also need to merge pairs P1 and
P2 if they represent parts of the same constituent and P1 forms a word (i

α. . .)i
α

and P2 (j
α. . .)j

α for some rule α by checking if P1 and P2 share a state on the
left or right. This is done in lines 8–13. Note that we do not explicitly need to
check the contents of the words formed by P1 and P2 or that the indices i and
j are such that j = i + 1 since this has already been taken care of by the local
grammar. Hence, the finite automaton from which we are extracting the paths
containing balanced parentheses will never contain adjacent pairs of states in
such a configuration without the indices and rule components being compatible.
In other words, we need only look at the state numbers to perform the joining
of constituents. Finally, whenever we encounter a state pair such that one state
is the initial state and the other a final state, we have found a parse. It is
assumed that in lines 17–19 we maintain backtraces of the pairs we added to the
agenda A so that the string representing the parse can be reconstructed as one is
found.

4 Analysis

Before we move on to consider enhancements to the parsing algorithms, let us
first briefly analyze the complexity of parsing a sentence.

First, let us represent the size of the local grammar R, which depends on
G, by some constant c. It is worth noting that the constraints (a)–(e) which R
is constructed from are all strictly local, maximally 3-testable languages. This
leads to that the size of R grows additively with each grammar rule.2

The task of constructing from a sentence to be parsed the automaton Rw

(step 1) takes time proportional to the length of the sentence, i.e. |w|. When
intersecting two finite automata the result grows as the product of the two. In
this case, since |R| = c and Rw has |w| states, we have that steps (1) and (2)
are of time complexity c|w|, where c depends on the grammar, i.e. O(|w|).

For the analysis of the algorithm for ExtractBalanced, let us restrict our-
selves to cases where the grammar is given in Chomsky Normal Form. This is
reflected in the automaton produced by step (2) in such a way that the maxi-
mum index i of a bracket (i

R representing a rule is 2. Interestingly, we can thus

2 This additive growth is important since it is indeed possible to construct many
different types of local grammars R that work correctly in tandem with the balanced-
parenthesis-grammar D. However, not all of them exhibit subexponential or linear
complexity as the construction in this paper does.

156 M. Hulden

Algorithm 1. ExtractBalanced

Input: FSM = (V, E)
begin1

foreach (p, q) ∈ V where there is a transition p
s→ q and s ∈ ΣT do2

add (p, q) to A as unmarked3

end4

while there is an unmarked pair in A do5

Choose a pair P = (p, q) from A6

Mark P7

if exists a pair Q = (p′, q′) in A such that q′ = p then8

add (p′, q) to A as unmarked9

end10

if exists a pair Q = (p′, q′) in A such that p′ = q then11

add (p, q′) to A as unmarked12

end13

if exists transitions (p′ s→ p), (q t→ q′), where s = (i
R, t =)j

R and i = j14

then
add (p′, q′) to A as unmarked15

end16

if p ∈ Vstart and q ∈ Vfinal then17

Return(Backtrace(P))18

end19

end20

end21

find an isomorphism between the algorithm that locates paths that contain bal-
anced parentheses in the automaton and the CKY algorithm. That is, each pair
p, q added at lines 8–13 represents a complete subtree over some span i, j for
the sentence to be parsed. Obviously, the if checks at lines 8–17 take O(1) time
assuming some suitable indexing of the pairs stored. For any subparse of a sub-
word of length n there are n − 1 ways of breaking it up into two constituents
(1R. . .)1R(2R. . .)2R. This means each possible pair (of which there are n2, n being
the number of states in the automaton) added to A may be added O(n) times.
The total complexity is then O(n3), and given that the size of the automaton n
is proportional to |w|, also O(|w|3).

In the above, we are not committing ourselves to any particular queuing strat-
egy for the state pairs in A. There are many options available of how to proceed
in this respect. For instance, lines 2–4 immediately add all the spans representing
the terminals on the agenda after which we subsequently iterate the search until
the agenda is empty. This is not strictly necessary as one can proceed left-to-
right in the parse by only adding the states representing the first two terminals
in the strings, and then, once A is empty, add the third, etc. This strategy would
correspond somewhat to Earley’s algorithm (Earley, 1968), and could avoid some
extra work in that it may reduce the construction of subparses (state pairs) that
are not actually parts of complete parses.

Parsing CFGs and PCFGs with a Chomsky-Schützenberger Representation 157

�� �� ��

��� �	
 ��� �	
 ��� �	
 ��� �	
 ��� �	

����� �� ��

��� �	
 ��� �	
 ��� �	
 ��� �	
 ��� �	

���

���

���

���

���

��
��

���

���

���

���

��
��

��

��

��

Fig. 1. Basic workflow for parsing a CFG or PCFG

4.1 Weights and PCFGs

In many cases we would like to include treatment of probabilistic grammars
in such a way that each production A → α has a weight associated with it,
and each parse therefore also has a total probability associated with it. This is
simply a matter of storing with each A, an associated probability, or cost, and
handling the maintenance of the associated subparses accordingly. There are sev-
eral potential strategies regarding how this could be handled. We have chosen in
our implementation to mark certain transitions in the automaton with a weight
or probability. More specifically, each transition with a symbol (1R carries the
weight/cost of rule R, other transitions carrying cost 0. Obviously, every correct
parse will always include the first opening bracket symbol for each constituent,
and hence it is sufficient to mark only these.

158 M. Hulden

a

(1S→SS

)1S→b

(1S→b

(1S→SS

)1S→SS

)1S→a

)2S→SS

)1S→SS

(1S→b

b

b

)1S→b

)1S→SS

)1S→a)1S→b

(1S→a

a

)1S→a)1S→b

(1S→SS

)2S→SS

(1S→a

)1S→a)1S→b)2S→SS

)1S→a

(2S→SS

98

10

32

1

0

7

6

5

4

13

12

14

11

Fig. 2. An example of R, a simple CFG approximation

Parsing CFGs and PCFGs with a Chomsky-Schützenberger Representation 159

Naturally, if we are only interested in a single most likely parse, we can in-
clude a Viterbi approximation and for each A on the agenda, store only the one
with lowest probability (recall from the above that each state pair represents a
combination of a span and constituent).

5 An Example

Let us illustrate the parsing method by a simple grammar with three production
rules

P = {S → SS, S → a, S → b}
and a simple string to be parsed: “aaa”

Figure 2 shows the automaton representing the regular approximation R pro-
duced by intersection rules (a)–(e). The automaton Rw is simply a four-state
machine that accepts the string “aaa” with any number of bracket symbols in-
tervening, drawn from the bracket alphabet:

{(1S→SS, (2S→SS,)1S→SS ,)2S→SS , (1S→a,)1S→a, (1S→b,)
1
S→b}

The resulting automaton Rlocal = Rw ∩ R still contains an arbitrary number of
strings, from which the algorithm ExtractBalanced draws out the only two
legal parse strings:

(1S→SS (1S→a a)1S→a)1S→SS (2S→SS (1S→SS (1S→a a)1S→a)1S→SS (2S→SS (1S→a a)1S→a)2S→SS)2S→SS

and

(1S→SS (1S→SS (1S→a a)1S→a)1S→SS (2S→SS (1S→a a)1S→a)2S→SS)1S→SS(2S→SS (1S→a a)1S→a)2S→SS

representing the parse trees in figure 3 (a) and (b), respectively.

(a) (b)
S

S

a

S

S

a

S

a

S

S

S

a

S

a

S

a

Fig. 3. Two parse trees from the example grammar

6 Conclusion and Further Work

We have presented an overall strategy for parsing CFGs and PCFGs through a
representation of a CFG as a combination of a regular grammar and a grammar
of balanced parentheses. Using this encoding, we present a general cubic-time
algorithm for parsing of arbitrary context-free grammars, which can also be used

160 M. Hulden

for parsing PCFGs. The resulting algorithm is simple to implement assuming
one can construct finite-state automata from regular expressions.3

Apart from its direct usability, we also expect the basic approach to be ap-
plicable to a number of recent approaches that use CFG representations for NL
tasks such as lexicalized PCFGs (Charniak, 1997) or bilexical grammar parsing
tasks (Eisner, 1997), to name a few.

References

Charniak, E.: Statistical parsing with a context-free grammar and word statistics. In:
Proceedings of the 14th National Conference on Artificial Intelligence, pp. 598–603
(1997)

Chomsky, N., Schützenberger, M.-P.: The algebraic theory of context-free languages.
In: Braffort, P., Hirschberg, D. (eds.) Computer Programming and Formal Systems,
pp. 118–161. North Holland, Amsterdam (1963)

Earley, J.: An efficient context-free parsing algorithm. PhD thesis, Carnegie-Mellon
University, Pittsburgh, Pa (1968)

Eisner, J.: Bilexical grammars and a cubic-time probabilistic parser. In: Proceedings
of the 1997 International Workshop on Parsing Technologies (1997)

Hulden, M.: Foma: a finite-state compiler and library. In: Proceedings of EACL 2009,
pp. 29–32 (2009)

Kozen, D.C.: Automata and Computability. Springer, Heidelberg (1997)
Salomaa, A.: Formal Languages. Academic Press, New York (1973)
Younger, D.H.: Recognition and parsing of context-free languages in time n3. Informa-

tion and Control 10, 189–208 (1967)

3 We have made an implementation of the basic algorithm for CFGs and a Viterbi
PCFG-parser using the finite-state toolkit foma (Hulden, 2009).

